

With nearly 80 years of crafting the world's finest writing surfaces Claridge and Calyx by Claridge offer a comprehensive product portfolio ideal for environments ranging from K-12 schools to sleek corporate spaces. Our products facilitate learning, foster collaboration, stimulate creativity, and empower people to reach their full potential.

Always an industry leader, we introduced and produced the first markerboards, called the LCS or Liquid Chalk System, to the United States at the AASA show in New Jersey in 1973. The markerboard quickly replaced the chalkboard and the resulting demand led to another expansion of the Claridge facility. Throughout the years Claridge has continued its leadership position in new product development offering all types of chalkboards and markerboards, including glass which was introduced in 2008, and expanding its core to include mobiles, horizontal and vertical sliding units, enclosed bulletin board cabinets, trophy cases, and so much more. More than 250 employees make up the Claridge team, including several with more than 45 years of service.

In 2022, Claridge Products introduced a new brand, Calyx by Claridge, to work alongside its thriving construction products division. Calyx by Claridge focuses on design-centric commercial interiors and furniture while Claridge concentrates on work completed through general contractors and architects on public bid contracts, largescale renovations and remodels and new construction projects in the commercial, K-12, higher education and hospitality sectors.

Space Creators are designed to create temporary environments that quickly adapt to ever changing needs. Freestanding panels work together to provide privacy and room segmentation in style.

The Venue Space Divider, one of the products within the Space Creators product category, is displayed above.

Declaration Owner

Claridge Products 480 Wrangler Drive, Suite 200 Coppell, TX 75019 https://claridgeproducts.com/ https://calyxbyclaridge.com/ 1-800-364-2422

Product

Space Creators

Functional Unit

The functional unit is one square meter (1 m²) of workspace, for a 10year period.

EPD Number and Period of Validity

SCS-EPD-10373 Valid: April 25, 2025 through April 24, 2030

Product Category Rule

BIFMA PCR for Office Furniture Workspace Products: UNCPC 3814, V2. NSF International. Valid through January 2030.

Program Operator

SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 +1.510.452.8000 | www.SCSglobalServices.com

Declaration owner:	Claridge Products					
Address:	480 Wrangler Drive, Suite 200, Coppell, TX 75019					
For Additional Explanatory Material:	calyx@claridgeproducts.com					
Declaration Number:	SCS-EPD-10373					
Date of Issue:	April 25, 2025					
Declaration Validity Period:	April 25, 2025 through April 24, 2030					
Program Operator:	SCS Global Services, 2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA					
Declaration URL Link:	https://www.scsglobalservices.com/certified-green-products-guide					
General Program Instructions:	SCS Type III Environmental Declaration Program: Program Operator Manual. V12.0					
Product(s):	Space Creators					
Functional Unit:	1 m ² of workspace, for a 10-year period					
EPD Type and Scope:	Product Specific, Cradle-to-gate with options					
Product RSL:	10 Years					
Product Subcategory:	Option B: Panels in addition with other office components intended for one person					
Markets of Applicability:	North America					
Year(s) of Reported Manufacturer Primary Data:	July 2023 - June 2024					
LCA Software & Version Number:	SimaPro v9.6					
LCI Database(s) & Version Number:	Ecoinvent 3.10 or USLCI 2015					
LCIA Methodology & Version Number:	TRACI 2.1; CML 4.1					
Reference PCR:	R: BIFMA PCR for Office Furniture Workspace Products: UNCPC 3814, V2. NSF International. Valid through January 2030.					
Sub-category PCR review:	Thomas P. Gloria, PhD, Industrial Ecology Consultants; Jack Geibig, PE, Ecoform; Michael Overcash, PhD, Environmental Clarity					
Independent critical review of the LCA and						
data, according to ISO 14044 and the PCR:	□ internal					
LCA Reviewer:	Beth Cassese, SCS Global Services					
Independent verification of the declaration and data, according to ISO 14025 and the PCR:	□ internal 🛛 external					
EPD Verifier:	Beth Cassese, SCS Global Services					
Declaration Contents:	1. Claridge Products 2. Products 3. Methodological Framework 4. Technical Information and Scenarios 5. LCA: Results 6. LCA: Interpretation 7. Additional Environmental Information 8. References					

Disclaimers: This EPD conforms to ISO 14025, 14040, 14044, and ISO 21930.

Scope of Results Reported: The PCR requirements limit the scope of the LCA metrics such that the results exclude environmental and social performance benchmarks and thresholds, and exclude impacts from the depletion of natural resources, land use ecological impacts, ocean impacts related to greenhouse gas emissions, risks from hazardous wastes and impacts linked to hazardous chemical emissions.

Accuracy of Results: Due to PCR constraints, this EPD provides estimations of potential impacts that are inherently limited in terms of accuracy.

Comparability: The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled.

In accordance with ISO 21930:2017: EPDs are comparable only if they comply with the core PCR, use the same sub-category PCR where applicable, include all relevant information modules and are based on equivalent scenarios with respect to the context of construction works.

The owner of the declaration shall be liable for the underlying information and evidence; SCS shall not be liable with respect to manufacturer information, life cycle assessment data, and evidence supplied or made available to SCS.

1. Claridge Products

Backed by the manufacturing expertise and distribution network of its parent company, Claridge Products and Equipment is the leading manufacturer of writing surfaces in the U.S. market. With two comprehensive brand channels, the company has the most comprehensive product offering with the two best writing surfaces in the industry: glass and porcelain. We are experts at engineering and manufacturing products that provide superior ease of installation.

2. Products

2.1 PRODUCT DESCRIPTION

Space Creators are designed to create temporary environments that quickly adapt to ever changing needs. Freestanding panels work together to provide privacy and room segmentation in style

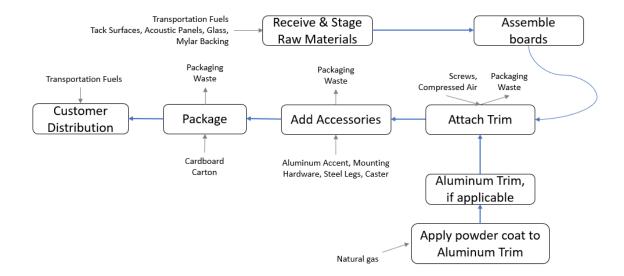
- Best in class writing surfaces, LCS Porcelain enamel steel or Claridge Glass
- Mix and match marker and tack surfaces on either side of the panels
- A functional, movable environment that can be reconfigured instantly
- Carve out privacy for touchdown spaces

The Venue Space Divider, one of the products within the Space Creators product category, is displayed to the right.

This EPD evaluates the following products as part of this Space Creators product category:

725 Folding Screen, Mina Space Creator, Ripple Divider, Venue Space Divider, and the X2 Space Creator

In accordance with the PCR, this EPD presents the results of a base


configuration product, as well as alternative configurations to reflect the minimum and maximum environmental impacts of this product category. The base configuration product was selected as a product having median impact results within the entire product category portfolio of this EPD. The base configuration product presented is the Venue Space Divider MB-Acoustic, the minimum alternative configuration is the 725 Folding Screen, and the maximum alternative configuration is the X2 Space Creator.

2.2 PRODUCT SPECIFICATION

Space Creators are SCS Indoor Advantage Gold Certified, and these products are available in sizes from 5'x3' to 5'x8'.

2.3 FLOW DIAGRAM

2.4 PRODUCT REPRESENTATIONS

For this product category EPD, median, minimum, and maximum impact products were chosen to represent the product family, in accordance with the PCR. The results in this EPD present a base configuration as well as alternative configurations to reflect maximum and minimum impacts to environmental categories.

2.5 APPLICATION

Space Creators are ideal for a wide range of applications and environments including but not limited to corporate interiors, education, healthcare, and anywhere collaboration happens.

3. Methodological Framework

3.1 FUNCTIONAL UNIT

1 m² of workspace, for a 10-year period.

3.2 SYSTEM BOUNDARY

The life cycle phases included in the scope of this EPD are presented in Table 1. System Boundary for the Space Creators Product Category.

Table 1. System Boundary for the Space Creators Product Category.

	Product	:	Const	ruction				Use				End-of-life			Benefits and loads beyond the system boundary	
A1	A2	А3	A4	A5	B1	B2	ВЗ	В4	B5	В6	В7	C1	C2	C3	C4	D
Raw material extraction and processing	Transport to manufacturer	Manufacturing	Transport	Construction - installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, recovery and/or recycling potential
Х	X	X	X	Χ	Χ	MND	MND	X	MND	MND	MND	X	X	X	X	MND

X = Module Included | MND = Module Not Declared

3.3 END-OF-LIFE

In accordance with the PCR, the end-of-life scenario was modeled based on the 2018 US EPA, therefore the study assumes 25.0% of glass materials, 33.1% of steel materials and 17.2% of aluminum materials are recycled at the end of life. For the remaining unrecycled materials, it is assumed that 20% goes to incineration and 80% goes to landfill.

3.4 ALLOCATION

General principles of allocation were based on ISO 14040/44. ecoinvent databases tend to allocate based on either economic or physical (mass and area) basis. Additionally, primary electricity and natural gas from the Harrison extruded aluminum facility was allocated exclusively to products containing Extruded Aluminum with a mass and area allocation approach, in order to reflect the process flow of the facility.

3.5 CUT-OFF RULES

Processes whose total contribution to the final result, with respect to their mass and in relation to all considered impact categories, is less than 1% can be neglected. The sum of the neglected processes may not exceed 5% by mass and by 5% of the considered impact categories.

3.6 DATA SOURCES

Primary data are the information collected directly from Claridge and includes the average values, locations, formulations, chemical compositions, etc. of the products in scope. Primary data from the manufacturer was from July 2023 to June 2024. These primary data are based on direct information sources of the manufacturer.

All secondary data were taken from literature, previous LCI studies, and life cycle databases. Each dataset used was taken from ecoinvent or USLCI (United States Life Cycle Inventory) databases. These databases are widely distributed and referenced within the LCA community and are either partially or fully critically reviewed.

Inputs and outputs related to combustible material were transformed using the heat of combustion values based on higher heating values (HHVs), in accordance with Section 4.3.3.1 of ISO 14044:2006

Table 2 below presents the data sources for the Space Creators product category.

	es for the Space Creators Product Category		
Flow	Dataset	Data Source	Publication Date
Raw Materials			
ABS	Acrylonitrile-butadiene-styrene copolymer {RoW} acrylonitrile-butadiene-styrene copolymer production Cut-off, U	ecoinvent 3	2023
	Injection moulding {RoW} injection moulding Cut-off, U	ecoinvent 3	2023
	Fibre, polyester {GLO} market for fibre, polyester Cut-off, U	ecoinvent 3	2023
Acoustic Panel	Dicyclopentadiene based unsaturated polyester resin {GLO} market for dicyclopentadiene based unsaturated polyester resin Cut-off, U	ecoinvent 3	2023
	Polylactic acid, granulate {GLO} market for polylactic acid, granulate Cut-off, U	ecoinvent 3	2023
Aluminum	Aluminium, cast alloy {GLO} market for aluminium, cast alloy Cut-off, U	ecoinvent 3	2023
Aluminum Hardware	Aluminium, cast alloy {GLO} market for aluminium, cast alloy Cut-off, U	ecoinvent 3	2023
	Titanium dioxide {RoW} market for titanium dioxide Cut-off, U	ecoinvent 3	2023
	Kaolin {GLO} market for kaolin Cut-off, U	ecoinvent 3	2023
Bond Primer	Potash salt {RoW} market for potash salt Cut-off, U	ecoinvent 3	2023
BONG PHIMEI	Limestone, crushed, washed {RoW} market for limestone, crushed, washed Cut-off, U	ecoinvent 3	2023
	Silica sand {GLO} market for silica sand Cut-off, U	ecoinvent 3	2023
Brass	Bronze {GLO} market for bronze Cut-off, U	ecoinvent 3	2023
Cork	Cork, raw {RoW} market for cork, raw Cut-off, U	ecoinvent 3	2023
	Aluminium alloy, AlLi {GLO} market for aluminium alloy, AlLi Cut-off, U	ecoinvent 3	2023
External od Alimoia ma	Electricity, at eGrid, SRMV, 2022/RNA U	USLCI	2022
Extruded Aluminum	Heat, district or industrial, natural gas {RoW} market for heat, district or industrial, natural gas Cut-off, U	ecoinvent 3	2023
Forza Adhesive	Paraffin {GLO} market for paraffin Cut-off, U	ecoinvent 3	2023
	Fibreboard, soft, without adhesives {RER} market for fibreboard, soft, without adhesives Cut-off, U	ecoinvent 3	2023
FSC Duracore	Potato starch {RoW} potato starch production Cut-off, U	ecoinvent 3	2023
	Petroleum slack wax {GLO} market for petroleum slack wax Cut-off, U	ecoinvent 3	2023
	Coating powder {RoW} market for coating powder Cut-off, U	ecoinvent 3	2023
Galvanized Steel	Galvanized steel sheet, at plant/RNA	USLCI	2015-2022
Honeycomb (Cardboard)	Corrugated board box {RoW} market for corrugated board box Cut-off, U	ecoinvent 3	2023
	Polyester resin, unsaturated {RoW} market for polyester resin, unsaturated Cut-off, U	ecoinvent 3	2023
	Triazine-compound {GLO} market for triazine-compound Cut-off, U	ecoinvent 3	2023
	Methacrylic acid {RoW} methacrylic acid production Cut-off, U	ecoinvent 3	2023
	Silica sand {GLO} market for silica sand Cut-off, U	ecoinvent 3	2023
	Benzoic acid {RoW} market for benzoic acid Cut-off, U	ecoinvent 3	2023
	Petroleum slack wax {GLO} market for petroleum slack wax Cut-off, U	ecoinvent 3	2023
	Tris(2,4-ditert-butylphenyl) phosphite {GLO} market for tris(2,4-ditert-butylphenyl) phosphite Cut-off, U	ecoinvent 3	2023
	Aniline {RoW} market for aniline Cut-off, U	ecoinvent 3	2023
	Carbon disulfide {GLO} market for carbon disulfide Cut-off, U	ecoinvent 3	2023
Metallic Paint	Sulfur {GLO} market for sulfur Cut-off, U	ecoinvent 3	2023
	Aluminium hydroxide {GLO} market for aluminium hydroxide Cut-off, U	ecoinvent 3	2023
	Limestone, unprocessed {RoW} market for limestone, unprocessed Cut-off, U	ecoinvent 3	2023
	Silica sand {RoW} silica sand production Cut-off, U	ecoinvent 3	2023
	Water, completely softened {RoW} market for water, completely softened Cut-off, U	ecoinvent 3	2023
	Titanium dioxide {RoW} market for titanium dioxide Cut-off, U	ecoinvent 3	2023
	Aluminium, cast alloy {GLO} market for aluminium, cast alloy Cut-off, U	ecoinvent 3	2023
	Potash salt {RoW} market for potash salt Cut-off, U	ecoinvent 3	2023
			2023

Flow	Dataset	Data Source	Publication Date
Medium Density Fiberboard	Medium density fibreboard {RoW} medium density fibreboard production, uncoated Cut-off, U	ecoinvent 3	2023
Particleboard	Particleboard, uncoated {RoW} market for particleboard, uncoated Cut-off, U	ecoinvent 3	2023
Polyethylene	Polyethylene, high density, granulate {GLO} market for polyethylene, high density, granulate Cut-off, U	ecoinvent 3	2023
Polyethylene Terephthalate	Polyethylene terephthalate, granulate, bottle grade {GLO} market for polyethylene terephthalate, granulate, bottle grade Cut-off, U	ecoinvent 3	2023
Porcelain Enameled Steel	Steel, low-alloyed {GLO} market for steel, low-alloyed Cut-off, U Kaolin {GLO} market for kaolin Cut-off, U	ecoinvent 3 ecoinvent 3	2023 2023
Powder Coating	Powder coat, aluminium sheet {GLO} market for powder coat, aluminium sheet Cut-off, U	ecoinvent 3	2023
Rubber	Synthetic rubber {GLO} market for synthetic rubber Cut-off, U	ecoinvent 3	2023
Steel	Steel, low-alloyed {GLO} market for steel, low-alloyed Cut-off, U	ecoinvent 3	2023
White Glue	Polyurethane adhesive {GLO} market for polyurethane adhesive Cut-off, U	ecoinvent 3	2023
	Titanium dioxide {RoW} market for titanium dioxide Cut-off, U	ecoinvent 3	2023
White Paint	Organophosphorus-compound, unspecified {GLO} market for organophosphorus-compound, unspecified Cut-off, U	ecoinvent 3	2023
	Acrylic dispersion, with water, in 58% solution state {RoW} market for acrylic dispersion, with water, in 58% solution state Cut-off, U	ecoinvent 3	2023
Acrylic	Polymethyl methacrylate, sheet {GLO} market for polymethyl methacrylate, sheet Cut-off, U	ecoinvent 3	2023
Porcelain	Kaolin {GLO} market for kaolin Cut-off, U	ecoinvent 3	2023
Production			
Electricity	Electricity, at eGrid, SRMV, 2022/RNA U	USLCI	2022
Natural Gas	Heat, district or industrial, natural gas {RoW} market for heat, district or industrial, natural gas Cut-off, U	ecoinvent 3	2023
Incoming Water	Water completely softened (LIS) I market for water completely softened I		2023
Transportation			
Truck Transportation	Transport, combination truck, average fuel mix/US	USLCI	2015-2022
Ship Transportation	Transport, ocean freighter, average fuel mix/US	USLCI	2015-2022
Packaging Materials			
	Corrugated board box {US} market for corrugated board box Cut-off, U	ecoinvent 3	2023
Cardboard (75% Recycled)	Graphic paper, 100% recycled {GLO} market for graphic paper, 100% recycled Cut-off, U	ecoinvent 3	2023
Paper	Kraft paper {RoW} market for kraft paper Cut-off, U	ecoinvent 3	2023
·	Polyethylene terephthalate, granulate, amorphous, recycled {US} market for polyethylene terephthalate, granulate, amorphous, recycled Cut-off, U	ecoinvent 3	2023
Polyester (50% Recycled)	Polyethylene terephthalate, granulate, amorphous {GLO} market for polyethylene terephthalate, granulate, amorphous Cut-off, U	ecoinvent 3	2023
Polystyrene (50% Recycled)	Polystyrene, general purpose {RoW} polystyrene production, general purpose Cut-off, U	ecoinvent 3	2023
1 olystyrene (50% Recycled)	Polystyrene scrap, post-consumer {GLO} polystyrene scrap, post-consumer, Recycled Content cut-off Cut-off, U	ecoinvent 3	2023
Polyphenylene Ether (50%	Packaging film, low density polyethylene {RoW} packaging film production, low density polyethylene Cut-off, U	ecoinvent 3	2023
Recycled)	Polyethylene, high density, granulate, recycled {US} polyethylene production, high density, granulate, recycled Cut-off, U	ecoinvent 3	2023
Steel	Steel, low-alloyed {GLO} market for steel, low-alloyed Cut-off, U	ecoinvent 3	2023
Wood	Sawnwood, softwood, dried (u=10%), planed {RoW} sawnwood production, softwood, dried (u=10%), planed Cut-off, U	ecoinvent 3	2023
vvoou	Softwood, arica (a Toto), planea Cat on, o		
Support Materials	Solivious, aried (a 10%), planed Cat on, o		
Support Materials	Dimethyl ether {RoW} market for dimethyl ether Cut-off, U	ecoinvent 3	2023
		ecoinvent 3 ecoinvent 3	2023 2023

Flow	Dataset	Data Source	Publication Date
	Pentane {GLO} market for pentane Cut-off, U	ecoinvent 3	2023
	Tap water {RoW} market for tap water Cut-off, U	ecoinvent 3	2023
	Polyurethane, flexible foam {RoW} market for polyurethane, flexible foam		
	Cut-off, U	ecoinvent 3	2023
	Methyl acetate {GLO} market for methyl acetate Cut-off, U	ecoinvent 3	2023
	Cyclohexane {GLO} market for cyclohexane Cut-off, U	ecoinvent 3	2023
	Naphtha {RoW} market for naphtha Cut-off, U	ecoinvent 3	2023
	Toluene, liquid {RoW} market for toluene, liquid Cut-off, U	ecoinvent 3	2023
Support Material Aluminum	Aluminium, cast alloy {GLO} market for aluminium, cast alloy Cut-off, U	ecoinvent 3	2023
	Tap water {RoW} market for tap water Cut-off, U	ecoinvent 3	2023
Buffer Solution pH 4.0	Formaldehyde {RoW} market for formaldehyde Cut-off, U	ecoinvent 3	2023
	Methanol {US} market for methanol Cut-off, U	ecoinvent 3	2023
	Tap water {RoW} market for tap water Cut-off, U	ecoinvent 3	2023
Buffer Solution pH 7.0	Phosphoric acid, industrial grade, without water, in 85% solution state {GLO} market for phosphoric acid, industrial grade, without water, in 85% solution state Cut-off, U	ecoinvent 3	2023
	Nitric acid, without water, in 50% solution state $\{RoW\}\$ market for nitric acid, without water, in 50% solution state $\{Cut-off, U\}$	ecoinvent 3	2023
Castrol GTX 10-W-30	Lubricating oil {RoW} market for lubricating oil Cut-off, U	ecoinvent 3	2023
	Tap water {RoW} market for tap water Cut-off, U	ecoinvent 3	2023
Caustic Soda	Sodium hydroxide, without water, in 50% solution state {RoW} market for sodium hydroxide, without water, in 50% solution state Cut-off, U	ecoinvent 3	2023
	Sodium chloride, powder {GLO} market for sodium chloride, powder Cutoff, U	ecoinvent 3	2023
CITGO A/W Hydraulic Oil 32	Lubricating oil {RoW} market for lubricating oil Cut-off, U	ecoinvent 3	2023
	Xylene, mixed {RoW} market for xylene, mixed Cut-off, U	ecoinvent 3	2023
	1-butanol {GLO} market for 1-butanol Cut-off, U	ecoinvent 3	2023
DUDA DI ATE 225 M. IV	Phenol {RoW} market for phenol Cut-off, U	ecoinvent 3	2023
DURA-PLATE 235 Multi-	Dimethylamine {RoW} market for dimethylamine Cut-off, U	ecoinvent 3	2023
Purpose Epoxy (Part B) Hardener	Formaldehyde {RoW} market for formaldehyde Cut-off, U	ecoinvent 3	2023
rial deriei	Ethyl benzene {RoW} market for ethyl benzene Cut-off, U	ecoinvent 3	2023
	Ethylene diamine {RoW} market for ethylene diamine Cut-off, U	ecoinvent 3	2023
	Epoxy resin, liquid {RoW} market for epoxy resin, liquid Cut-off, U	ecoinvent 3	2023
Formbond OS2 Performance Polymer Adhesive Sealant	Bitumen adhesive compound, cold {GLO} market for bitumen adhesive compound, cold Cut-off, U	ecoinvent 3	2023
GL-5 80W90	Lubricating oil {RoW} market for lubricating oil Cut-off, U	ecoinvent 3	2023
	Cumene {GLO} market for cumene Cut-off, U	ecoinvent 3	2023
	Oxygen, liquid {RoW} market for oxygen, liquid Cut-off, U	ecoinvent 3	2023
Loctite 271 Threadlocker	Methyl methacrylate {RoW} market for methyl methacrylate Cut-off, U	ecoinvent 3	2023
LOCULE 27 I TIII Edulockei	Sugar, from sugarcane {RoW} sugarcane processing, traditional annexed plant Cut-off, U	ecoinvent 3	2023
	Bitumen seal {GLO} market for bitumen seal Cut-off, U	ecoinvent 3	2023
Mineral Spirits	Lubricating oil {RoW} market for lubricating oil Cut-off, U	ecoinvent 3	2023
NEUTRAL-Q Disinfectant	Ammonium chloride {GLO} market for ammonium chloride Cut-off, U	ecoinvent 3	2023
Cleaner Deodorant	Tap water {RoW} market for tap water Cut-off, U	ecoinvent 3	2023
SHER-WOOD BAC Wiping	Lubricating oil {RoW} market for lubricating oil Cut-off, U	ecoinvent 3	2023
Stain Clear Tint Base	Xylene, mixed {RoW} market for xylene, mixed Cut-off, U	ecoinvent 3	2023
	Methyl ethyl ketone {RoW} market for methyl ethyl ketone Cut-off, U	ecoinvent 3	2023
	Butyl acetate {RoW} market for butyl acetate Cut-off, U	ecoinvent 3	2023
SHER-WOOD Hi-Bild Precat	Cellulose fibre {RoW} market for cellulose fibre Cut-off, U	ecoinvent 3	2023
Lacquer Medium Rubbed	2-methyl-1-butanol {GLO} market for 2-methyl-1-butanol Cut-off, U	ecoinvent 3	2023
Effect	Ethanol, without water, in 99.7% solution state, from ethylene {RoW} market for ethanol, without water, in 99.7% solution state, from ethylene Cut-off, U	ecoinvent 3	2023
	Acetone, liquid {RoW} market for acetone, liquid Cut-off, U	ecoinvent 3	2023

Flow	Dataset	Data Source	Publication Date			
	Ethyl acetate {GLO} market for ethyl acetate Cut-off, U	ecoinvent 3	2023			
	1-propanol {GLO} market for 1-propanol Cut-off, U					
	1-butanol {GLO} market for 1-butanol Cut-off, U	ecoinvent 3	2023			
	Urea formaldehyde resin {RoW} urea formaldehyde resin production Cutoff, U	ecoinvent 3	2023			
	Lubricating oil {RoW} market for lubricating oil Cut-off, U	ecoinvent 3	2023			
	Formaldehyde {RoW} market for formaldehyde Cut-off, U	ecoinvent 3	2023			
	1-propanol {GLO} market for 1-propanol Cut-off, U	ecoinvent 3	2023			
Wash Primer Catalyst	Methyl ethyl ketone {RoW} market for methyl ethyl ketone Cut-off, U	ecoinvent 3	2023			
Reducer	Phosphoric acid, industrial grade, without water, in 85% solution state {GLO} market for phosphoric acid, industrial grade, without water, in 85% solution state Cut-off, U	ecoinvent 3	2023			
WD-40 Aerosol	Lubricating oil {RoW} market for lubricating oil Cut-off, U	ecoinvent 3	2023			
WD-40 AETOSOI	Carbon dioxide, liquid {RoW} market for carbon dioxide, liquid Cut-off, U	ecoinvent 3	2023			
Outflows						
Wastewater	Wastewater, average {RoW} market for wastewater, average Cut-off, U	ecoinvent 3	2023			
Municipal Solid Waste	Municipal solid waste {RoW} treatment of municipal solid waste, sanitary landfill Cut-off, U	ecoinvent 3	2023			
End-of-Life						
Aluminum Incineration	Scrap aluminium {RoW} treatment of scrap aluminium, municipal incineration Cut-off, U	ecoinvent 3	2023			
Glass Incineration	Waste glass {GLO} treatment of waste glass, municipal incineration Cut-off, U	ecoinvent 3	2023			
Steel Incineration	Scrap steel {RoW} treatment of scrap steel, municipal incineration Cut-off, U	ecoinvent 3	2023			
Municipal Solid Waste Incineration	Municipal solid waste {RoW} treatment of municipal solid waste, municipal incineration Cut-off, U	ecoinvent 3	2023			
Aluminum Landfill	Waste aluminium {RoW} treatment of waste aluminium, sanitary landfill Cut-off, U	ecoinvent 3	2023			
Glass Landfill	Waste glass {GLO} treatment of waste glass, sanitary landfill Cut-off, U	ecoinvent 3	2023			
Steel Landfill	Scrap steel {RoW} treatment of scrap steel, inert material landfill Cut-off, U	ecoinvent 3	2023			
Municipal Solid Waste Landfill	Municipal solid waste {RoW} treatment of municipal solid waste, sanitary landfill Cut-off, U	ecoinvent 3	2023			

3.7. DATA QUALITY

The data quality assessment addressed time-related coverage, geographical coverage, technological coverage, precision, completeness, representativeness, consistency, reproducibility, sources of data, and uncertainty.

Table 3. Data quality assessment for Claridge Products.

Data Quality Parameter	Data Quality Discussion
Time-Related Coverage: Age of data and the minimum length of time over which data is collected	The most recent available data is used, all of which is less than 5 years old. Manufacturer-supplied data (primary data) are based on annual production and usage for the period of July 2023 to June 2024.
Geographical Coverage: Geographical area from which data for unit processes is collected to satisfy the goal of the study	The data used in this study provides the best possible representation available with the most recently published databases for Arkansas. Proxy data used in the model is representative of North American or Global operations. Global data is considered an accurate representation of the actual processes.
Technology Coverage: Specific technology or technology mix	For the majority of processes, data utilized is representative of actual processing, transportation, manufacturing, and disposal operations. When direct datasets are not available, appropriate proxies representing similar processes or material components are utilized.
Precision: Measure of the variability of the data values for each data expressed	Precision of results is not quantified due to a lack of data. Data collected was for a single year and is assumed to be an appropriate representation of annual operations.
Completeness: Percentage of flow that is measured or estimated	The LCA model included all material and energy utilized in the production of Claridge Products. Per the PCR, processes whose total contribution to the final result, with respect to their mass and in relation to all considered impact categories, is less than 1% can be neglected. The sum of the neglected processes did not exceed 5% by mass or by 5% of the considered impact categories.
Representativeness: Qualitative assessment of the degree to which the data set reflects the true population of interest	The data for the processes utilized in the model represent typical or average processes as reported by industry wide or representative assessments. As such, among the technologies and equipment represented in these models, some variation may exist when compared to Claridge's actual supply chain. However, these variations are unavoidable as data collection throughout the entire supply chain is not feasible within the scope of this model.
Consistency: Qualitative assessment of whether the study methodology is applied uniformly to the various components of the analysis	This model utilizes consistent data sources. Some variation occurs between life cycle stages where primary data is not available or appropriate.
Reproducibility: Qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study	From the data and sources provided within this document the model and results are highly reproducible by other LCA practitioners. All assumptions and data sources are documented.
Sources of the Data: Description of primary and secondary data sources	Primary data including energy use, material use, and outflows from the manufacturing facility represent a full year of actual data and as such is considered high quality. For secondary data, ecoinvent 3.10 or USLCI 12.0 data is used and considered sufficiently high quality.
Uncertainty of the Information: Uncertainty related to data and assumptions	The uncertainty of the materials in Claridge products and packaging is low. Actual supplier data for upstream operations was not available so the model relied on representative databases. The databases are recent, but most are lacking geographic specificity.

3.8 PERIOD UNDER REVIEW

Data was collected from July 2023 to June 2024.

3.9 COMPARABILITY AND BENCHMARKING

The PCR this EPD was based on was written to determine the potential environmental impacts of a furniture workspace product from cradle-to-gate with options. It was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to

and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the products. Finally, in accordance with ISO 21930:2017, the comparability of EPDs is limited to those applying a functional unit.

3.10 ESTIMATES AND ASSUMPTIONS

The study assumes the reference service life is 10 years and nine replacements in that service life are included. Allocation of raw materials and utility use was based on a physical (mass and area) basis. Packaging materials are assumed to be disposed in a landfill 100% of the time. Installation materials (spray adhesive, aluminum sheet, buffer solution, oil, caustic soda, epoxy, polymer adhesive, thread locker, mineral spirits, disinfectant, tint, lacquer and lubricant) were reported by the manufacturer and allocated on a physical (mass and area) basis. Water usage from electricity is not included.

End-of-life modeling was based on 2018 US EPA waste statistics, and therefore the study assumes 25.0% of glass materials, 33.1% of steel materials and 17.2% of aluminum materials are recycled at the end of life. For the remaining unrecycled materials, it is assumed that 20% goes to incineration and 80% goes to landfill. All disposal is assumed to travel 100 km by truck and is allocated on a mass and area basis.

3.11 UNITS

All data and results are presented using SI units.

4. Technical Information and Scenarios

4.1 MATERIAL COMPOSITION

The material compositions of all Space Creator products represented by this EPD are presented in Table 4 per 1 m^2 of product. Note that there are no reportable dangerous or hazardous substances, as classified by US regulatory bodies, found in the final form of the products.

Table 4. Space Creator Product Composition

Product	725 Foldin	g Screen	Mina LC Crea		Ripple Divider Venue Space Divider		X2 Space Creator		Recycled Content		
	Percent	kg	Percent	kg	Percent	kg	Percent	kg	Percent	kg	%
ABS	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.313%	0.22	0.00
Acoustic Panel	0.000%	0.00	0.000%	0.00	39.310%	10.89	12.985%	5.44	0.000%	0.00	0.00
Aluminum	0.000%	0.00	0.000%	0.00	0.000%	0.00	1.104%	0.46	0.000%	0.00	0.00
Aluminum Hardware	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.042%	0.03	0.00
Bond Primer	0.000%	0.00	0.306%	0.20	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.00
Brass	1.672%	0.32	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.00
Cork	24.180%	4.59	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.00
Extruded Aluminum	22.304%	4.24	0.000%	0.00	38.246%	10.59	20.526%	8.60	10.983%	7.64	0.00
Forza Adhesive	0.000%	0.00	0.000%	0.00	0.000%	0.00	1.353%	0.57	0.815%	0.57	0.00
FSC Duracore	46.426%	8.82	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.00
Galvanized Steel	0.549%	0.10	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.00
Honeycomb (Cardboard)	0.000%	0.00	0.000%	0.00	0.000%	0.00	15.060%	6.31	0.000%	0.00	0.00

Metallic Paint	0.000%	0.00	0.544%	0.36	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.00
Medium Density Fiberboard	0.000%	0.00	45.560%	30.41	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.00
Particleboard	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.000%	0.00	53.542%	37.23	0.00
Polyethylene	0.000%	0.00	0.001%	0.00	0.004%	0.00	0.000%	0.00	0.002%	0.00	0.00
Polyethylene Terephthalate	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.245%	0.17	0.00
Porcelain Enameled Steel	0.000%	0.00	20.389%	13.61	0.000%	0.00	16.232%	6.80	19.569%	13.61	0.00
Powder Coating	0.000%	0.00	0.000%	0.00	0.819%	0.23	1.894%	0.79	1.305%	0.91	0.00
Rubber	0.043%	0.01	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.00
Steel	0.387%	0.07	32.221%	21.50	13.431%	3.72	29.595%	12.41	11.892%	8.27	0.00
White Glue	4.438%	0.84	0.674%	0.45	0.000%	0.00	1.251%	0.52	1.293%	0.90	0.00
White Paint	0.000%	0.00	0.306%	0.20	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.00
Acrylic	0.000%	0.00	0.000%	0.00	8.190%	2.27	0.000%	0.00	0.000%	0.00	0.00
Porcelain	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.000%	0.00	0.00
				Pa	kaging						
Wood	69%	1.00	69%	5.01	69%	1.82	69%	2.75	69%	7.31	0%
Steel	1%	0.01	1%	0.04	1%	0.01	1%	0.02	1%	0.06	0%
Polyester	0%	0.00	0%	0.00	0%	0.00	0%	0.00	0%	0.00	50%
Cardboard	23%	0.34	23%	1.70	23%	0.62	23%	0.93	23%	2.47	75%
PPE	6%	0.09	6%	0.45	6%	0.16	6%	0.24	6%	0.65	50%
Paper	0%	0.00	0%	0.00	0%	0.00	0%	0.00	0%	0.00	0%
Polystyrene	1%	0.02	1%	0.08	1%	0.03	1%	0.04	1%	0.11	50%
Product Total Weight (kg)	ight 18.99 66.74 27.6		27.69 41.92		92	69.54					
Product Total Area (m²)	2.7	'9	1.9	5	2.2	3	2.23		1.39		
Product Weight / Area (kg/m²)	6.8	31	34.2	21	12.4	12	18.80		49.9	0	

4.2 MANUFACTURE

Extruded Aluminum at the Harrison Extrusion plant begins with raw aluminum stock. The stock is preheated in a natural gas fired oven and then soldered and pressed through a dye. The pressed stock is then air-cooled by a fan, and then further cooled on a cooling table using compressed air. The stock is then cut to shape and tempered in an oven. Next the aluminum is either anodized or painted. Anodized material undergoes a series of baths and rinse cycles including a sulfuric bath, and caustic soda bath, a mud bath, anodization, sealant and finally a hot water rinse. Painted material is powder coated and cured. Finally, all material is staged, inspected and packaged for shipping to the main Harrison manufacturing plant.

Raw materials, which include tack surfaces, acoustic panels, glass, and mylar backing, arrive at the Harrison manufacturing site. Boards are assembled on-site, trim is attached, and then accessories are added. Finally, the final products are packaged and shipped out to the customers.

4.3 PRODUCT TRANSPORT

Table 5. Product Transportation

Nama	limit nov 1 mg?	Val	lue				
Name	Unit per 1 m ²	725 Folding Screen	X2 Space Creator				
Type of transport	-	Truck Transport					
Type of vehicle	-	Diesel					
Distance	km	1.58E+03 1.59E+03					

4.4 PRODUCT INSTALLATION

Table 6. Product Installation

Name	Unit per 1 m ²	Value					
Name	Offic per 1 fil-	725 Folding Screen	X2 Space Creator				
Description of the installation process	Product is ins	stalled directly onto a wall in accordance	with Claridge installation standards				
Ancillary materials	kg	0.00E+00					
Product loss per functional unit	kg	3.65E-01	2.66E+00				
Energy use during installation (by energy carrier)	MJ	0.00E+00	0.00E+00				
Water use during installation (by water source)	m ³	0.00E+00	0.00E+00				
Direct emissions to ambient air, soil and water	kg	0.00E+00	0.00E+00				
Packaging waste (landfill)	kg	1.45E+00	1.06E+01				
Biogenic carbon content of packaging	kg CO ₂	2.24E+00	1.64E+01				

4.4 PRODUCT USE

 Table 7. Product Use

Nama	Limit may 1 mm?	Value						
Name	Unit per 1 m²	725 Folding Screen	X2 Space Creator					
Water consumption (from tap, to sewer)	m ³	0.00E+00	0.00E+00					
Electricity consumption	kWh	0.00E+00	0.00E+00					
Other energy carriers	MJ	0.00E+00	0.00E+00					
Equipment output	kW	0.00E+00	0.00E+00					
Direct emissions to ambient air, soil, and water	kg	0.00E+00	0.00E+00					

4.5 PRODUCT REPLACEMENT

The replacement (B4) stage is the sum of the impacts for the life cycle of the product (A1+A2+A3+A4+A5+C1+C2+C3+C4) multiplied by the number of times it is replaced during the 10-year product service life of 10 years. The components of space creator products have a warranty of one year, so for this study it was assumed that the product is replaced nine times over a ten-year period.

4.6 DISPOSAL

The end-of-life scenario was modeled based on the 2018 US EPA Advancing Sustainable Materials Management studies. Based on that study it is assumed that 25.0% of glass materials, 33.1% of steel materials and 17.2% of aluminum materials are recycled at the end of life. For the remaining unrecycled materials, it is assumed that 20% goes to incineration and 80% goes to landfill, in accordance with the PCR. 100 kilometers is the distance assumed that the waste travels via truck before final destinations.

 Table 8. Product End-of-Life

	Jame	Unit per 1	Va	lue
r	rame	m²	725 Folding Screen	X2 Space Creator
Assumptions for scenario develo	pment		2018 US EPA Statistics and	PCR Guidance
Collection process (specified	Collected separately	kg	1.68E+00	1.31E+01
Collection process (specified by type) Collected with mixed construct waste Reuse		kg	5.62E+00	4.00E+01
waste		kg	0.00E+00	0.00E+00
	Recycling	kg	2.71E-01	3.11E+00
Recovery (specified by type)	Landfill	kg	5.62E+00	4.00E+01
	Incineration	kg	1.41E+00	1.00E+01
Disposal (specified by type) Product or material for final deposition		kg	7.30E+00	5.32E+01
Removals of biogenic carbon (ex	cluding packaging)	kg C	0.00E+00	0.00E+00

5. LCA: Results

Results of the Life Cycle Assessment are presented below per 1 m^2 of product. It is noted that LCA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. Note that inputs and outputs related to combustible material were transformed using the heat of combustion values based on higher heating values (HHVs), in accordance with Section 4.3.3.1 of ISO 14044:2006.

 Table 9. 725 Folding Screen TRACI Results – Minimum Configuration

Davameter	Parameter Parameter	Unit per 1	1 Life Cycle Stage									
Parameter	Parameter	m²	A1	A2	А3	A4	A5	В4	C2	C3	C4	
GWP	Global warming potential	kg CO ₂ -Eq.	2.61E+01	9.55E-01	5.61E+00	1.07E+00	2.22E+00	3.48E+02	6.31E-02	6.01E-01	2.10E+00	
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	3.54E-07	3.64E-11	4.49E-08	4.07E-11	2.06E-08	3.81E-06	2.41E-12	7.41E-10	2.30E-09	
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	2.19E-01	5.70E-03	3.34E-02	6.37E-03	1.35E-02	2.51E+00	3.77E-04	3.64E-04	8.16E-04	
EP	Eutrophication potential	kg N-Eq.	1.84E-01	3.18E-04	2.19E-02	3.55E-04	3.31E-02	3.02E+00	2.10E-05	1.08E-03	9.56E-02	
SP	Smog formation potential	kg O₃-Eq.	2.11E+00	1.56E-01	2.13E-01	1.74E-01	1.38E-01	2.55E+01	1.03E-02	1.06E-02	1.40E-02	
FFD	Fossil fuel depletion	MJ-surplus	4.04E+00	1.83E+00	6.99E+00	2.04E+00	7.52E-01	1.42E+02	1.21E-01	8.69E-04	2.52E-03	

Table 10. Venue Space Divider TRACI Results – Base Configuration

Darameter	arameter Parameter	Unit per 1				Li	ife Cycle Stag	ge			
rarameter	raiailletei	m²	A1	A2	А3	A4	A5	B4	C2	C3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	9.40E+01	1.15E+00	1.54E+01	2.95E+00	7.00E+00	1.13E+03	1.74E-01	1.04E+00	3.62E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	2.25E-05	4.39E-11	1.24E-07	1.12E-10	1.13E-06	2.14E-04	6.65E-12	1.67E-09	5.04E-09
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	5.32E-01	6.87E-03	9.19E-02	1.76E-02	3.32E-02	6.17E+00	1.04E-03	7.39E-04	1.64E-03
EP	Eutrophication potential	kg N-Eq.	4.83E-01	3.83E-04	6.05E-02	9.81E-04	8.50E-02	7.15E+00	5.80E-05	1.95E-03	1.63E-01
SP	Smog formation potential	kg O₃-Eq.	6.38E+00	1.88E-01	5.86E-01	4.82E-01	3.94E-01	7.29E+01	2.85E-02	2.12E-02	3.01E-02
FFD	Fossil fuel depletion	MJ-surplus	1.16E+01	2.20E+00	1.92E+01	5.65E+00	1.95E+00	3.69E+02	3.34E-01	1.87E-03	5.07E-03

 Table 11. X2 Space Creator TRACI Results – Maximum Configuration

Davameter	Davameter	Unit per 1				Li	ife Cycle Stag	ge			
Parameter	Parameter	m²	A1	A2	A3	A4	A5	В4	C2	C3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	1.42E+02	1.78E+00	4.10E+01	7.83E+00	1.35E+01	2.03E+03	4.63E-01	4.32E+00	1.51E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	3.23E-06	6.79E-11	3.29E-07	2.98E-10	1.83E-07	2.03E+03	1.76E-11	5.17E-09	1.53E-08
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	8.31E-01	1.06E-02	2.44E-01	4.67E-02	5.87E-02	2.03E+03	2.76E-03	2.53E-03	5.55E-03
EP	Eutrophication potential	kg N-Eq.	7.19E-01	5.92E-04	1.60E-01	2.60E-03	2.10E-01	2.03E+03	1.54E-04	7.85E-03	6.89E-01
SP	Smog formation potential	kg O₃-Eq.	1.03E+01	2.91E-01	1.56E+00	1.28E+00	7.08E-01	2.03E+03	7.56E-02	7.33E-02	9.39E-02
FFD	Fossil fuel depletion	MJ-surplus	1.71E+01	3.41E+00	5.12E+01	1.50E+01	4.38E+00	2.03E+03	8.87E-01	6.14E-03	1.64E-02

 Table 12. 725 Folding Screen CML Results – Minimum Configuration

Davameter	Davameter	Unit per 1	· · · · · · · · · · · · · · · · · · ·										
Parameter	Parameter	m²	A1	A2	А3	A4	A5	B4	C2	С3	C4		
GWP	Global warming potential	kg CO ₂ -Eq.	2.63E+01	9.58E-01	5.76E+00	1.07E+00	2.36E+00	3.57E+02	6.33E-02	5.99E-01	2.59E+00		
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	2.26E-07	3.61E-11	3.05E-08	4.03E-11	1.33E-08	2.45E-06	2.39E-12	5.85E-10	1.63E-09		
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	2.28E-01	4.71E-03	3.68E-02	5.25E-03	1.40E-02	2.61E+00	3.11E-04	2.87E-04	7.01E-04		
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	8.73E-02	8.34E-04	9.15E-03	9.31E-04	1.34E-02	1.32E+00	5.51E-05	4.61E-04	3.47E-02		
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg C ₂ H ₄ -Eq.	1.23E-02	2.17E-04	3.11E-03	2.42E-04	9.32E-04	1.56E-01	1.43E-05	9.78E-06	5.54E-04		
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	4.95E-03	0.00E+00	5.04E-06	0.00E+00	2.48E-04	4.68E-02	0.00E+00	1.04E-07	2.28E-07		
ADPF	Abiotic depletion potential for fossil resources	MJ	1.59E+02	1.23E+01	5.44E+01	1.37E+01	1.21E+01	2.28E+03	8.12E-01	9.53E-02	2.75E-01		

Table 13. Venue Space Divider CML Results – Base Configuration

Dawamatau	Dawamakan	Unit per 1				L	ife Cycle Stag	ge			
Parameter	Parameter	m²	A1	A2	А3	A4	A5	B4	C2	С3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	9.49E+01	1.15E+00	1.59E+01	2.96E+00	7.38E+00	1.15E+03	1.75E-01	1.04E+00	4.45E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.66E-05	4.34E-11	8.41E-08	1.11E-10	8.36E-07	1.58E-04	6.59E-12	1.30E-09	3.59E-09
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	5.38E-01	5.66E-03	1.01E-01	1.45E-02	3.37E-02	6.26E+00	8.59E-04	5.87E-04	1.40E-03
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	2.32E-01	1.00E-03	2.53E-02	2.57E-03	3.47E-02	3.20E+00	1.52E-04	8.43E-04	5.91E-02
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg C ₂ H ₄ -Eq.	3.44E-02	2.61E-04	8.56E-03	6.70E-04	2.55E-03	4.28E-01	3.96E-05	2.33E-05	9.52E-04
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	1.03E-02	0.00E+00	1.39E-05	0.00E+00	5.18E-04	9.79E-02	0.00E+00	2.37E-07	4.83E-07
ADPF	Abiotic depletion potential for fossil resources	MJ	5.58E+02	1.48E+01	1.50E+02	3.79E+01	3.83E+01	7.21E+03	2.24E+00	2.05E-01	5.54E-01

 Table 14. X2 Space Creator CML Results – Maximum Configuration

Davameter	Davamatav	Unit per 1 Life Cycle Stage									
Parameter	Parameter	m²	A1	A2	А3	A4	A5	B4	C2	С3	C4
GWP	Global warming potential	kg CO ₂ -Eq.	1.43E+02	1.79E+00	4.21E+01	7.85E+00	1.45E+01	2.10E+03	4.64E-01	4.31E+00	1.86E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	2.22E-06	6.73E-11	2.23E-07	2.96E-10	1.26E-07	2.33E-05	1.75E-11	4.09E-09	1.08E-08
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	8.28E-01	8.77E-03	2.69E-01	3.86E-02	5.92E-02	1.09E+01	2.28E-03	2.00E-03	4.76E-03
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	3.48E-01	1.55E-03	6.70E-02	6.83E-03	8.34E-02	6.84E+00	4.04E-04	3.33E-03	2.50E-01
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg C ₂ H ₄ -Eq.	5.75E-02	4.04E-04	2.28E-02	1.78E-03	5.12E-03	8.25E-01	1.05E-04	6.91E-05	3.98E-03
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	1.48E-02	0.00E+00	3.69E-05	0.00E+00	7.41E-04	1.40E-01	0.00E+00	7.31E-07	1.43E-06
ADPF	Abiotic depletion potential for fossil resources	MJ	8.71E+02	2.29E+01	3.98E+02	1.01E+02	7.04E+01	1.32E+04	5.95E+00	6.73E-01	1.79E+00

 Table 15. 725 Folding Screen Resource Use Results – Minimum Configuration

Dayanatay	Dawamataw	Unit per 1											
Parameter	Parameter	m²	A1	A2	A3	A4	A5	В4	C2	С3	C4		
RPRE	Renewable primary energy as energy carrier	MJ	2.75E+02	0.00E+00	4.21E+01	0.00E+00	1.59E+01	3.00E+03	0.00E+00	1.40E-02	5.85E-02		
RPR _M	Renewable primary energy resources as material utilization	MJ	0.00E+00										
NRPRE	Nonrenewable primary energy as energy carrier	MJ	1.40E+02	1.23E+01	5.57E+01	1.37E+01	1.33E+01	2.12E+03	8.12E-01	1.07E-01	3.49E-01		
NRPR _M	Nonrenewable primary energy as material utilization	MJ	4.19E+01	0.00E+00	0.00E+00	0.00E+00	2.09E+00	3.96E+02	0.00E+00	0.00E+00	0.00E+00		
SM	Use of secondary material	kg	0.00E+00	0.00E+00	3.22E-01	0.00E+00	0.00E+00	2.90E+00	0.00E+00	0.00E+00	0.00E+00		
RSF	Use of renewable secondary fuels	MJ	0.00E+00										
NRSF	Use of nonrenewable secondary fuels	MJ	0.00E+00										
RE	Energy recovered from disposed waste	MJ	0.00E+00										
FW	Use of net fresh water	m ³	2.24E-01	0.00E+00	2.68E+00	0.00E+00	1.39E-01	2.72E+01	0.00E+00	1.30E-03	-2.11E-02		

 Table 16. Venue Space Divider Resource Use Results – Base Configuration

Dawawaataw	Dawamataw	Unit per 1										
Parameter	Parameter	m²	A1	A2	А3	A4	A5	B4	C2	С3	C4	
RPRE	Renewable primary energy as energy carrier	MJ	1.72E+02	0.00E+00	1.16E+02	0.00E+00	1.44E+01	2.73E+03	0.00E+00	3.01E-02	1.17E-01	
RPR _M	Renewable primary energy resources as material utilization	MJ	0.00E+00									
NRPRE	Nonrenewable primary energy as energy carrier	MJ	5.03E+02	1.48E+01	1.53E+02	3.79E+01	4.18E+01	6.79E+03	2.24E+00	2.30E-01	7.00E-01	
NRPR _M	Nonrenewable primary energy as material utilization	MJ	1.19E+02	0.00E+00	0.00E+00	0.00E+00	5.96E+00	1.13E+03	0.00E+00	0.00E+00	0.00E+00	
SM	Use of secondary material	kg	0.00E+00	0.00E+00	8.88E-01	0.00E+00	0.00E+00	7.99E+00	0.00E+00	0.00E+00	0.00E+00	
RSF	Use of renewable secondary fuels	MJ	0.00E+00									
NRSF	Use of nonrenewable secondary fuels	MJ	0.00E+00									
RE	Energy recovered from disposed waste	MJ	0.00E+00									
FW	Use of net fresh water	m ³	5.46E-01	0.00E+00	7.39E+00	0.00E+00	3.80E-01	7.45E+01	0.00E+00	2.44E-03	-3.91E-02	

Table 17. X2 Space Creator Resource Use Results – Maximum Configuration

Dawanatan	Davisanska	Unit per 1	Life Cycle Stage									
Parameter	Parameter	m ²	A1	A2	А3	A4	A5	В4	C2	C3	C4	
RPRE	Renewable primary energy as energy carrier	MJ	7.92E+02	0.00E+00	3.08E+02	0.00E+00	5.51E+01	1.04E+04	0.00E+00	9.89E-02	3.80E-01	
RPR _M	Renewable primary energy resources as material utilization	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
NRPRE	Nonrenewable primary energy as energy carrier	MJ	3.62E+02	2.29E+01	4.07E+02	1.01E+02	7.57E+01	8.80E+03	5.95E+00	7.53E-01	2.27E+00	
NRPR _M	Nonrenewable primary energy as material utilization	MJ	6.02E+02	0.00E+00	0.00E+00	0.00E+00	3.01E+01	5.69E+03	0.00E+00	0.00E+00	0.00E+00	
SM	Use of secondary material	kg	0.00E+00	0.00E+00	2.36E+00	0.00E+00	0.00E+00	2.12E+01	0.00E+00	0.00E+00	0.00E+00	
RSF	Use of renewable secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
NRSF	Use of nonrenewable secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
RE	Energy recovered from disposed waste	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
FW	Use of net fresh water	m ³	9.79E-01	0.00E+00	1.96E+01	0.00E+00	9.83E-01	1.93E+02	0.00E+00	9.30E-03	-1.38E-01	

 Table 18. 725 Folding Screen Output Flows and Waste Categories – Minimum Configuration

				, 0								
Darameter	Davamatav	Unit per 1	Life Cycle Stage									
Parameter	Parameter	m²	A1	A2	А3	A4	A5	B4	C2	C3	C4	
HWD	Hazardous waste disposed	kg	1.53E-02	0.00E+00	2.33E-04	0.00E+00	7.80E-04	1.47E-01	0.00E+00	4.33E-06	1.21E-05	
NHWD	Non-hazardous waste disposed	kg	1.20E+00	0.00E+00	9.40E-01	0.00E+00	1.87E+00	9.17E+01	0.00E+00	5.34E-01	5.65E+00	
HLRW	High-level radioactive waste	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
ILLRW	Intermediate- and low-level radioactive waste	kg	3.38E-04	0.00E+00	1.88E-05	0.00E+00	1.81E-05	3.39E-03	0.00E+00	1.66E-07	1.12E-06	
CRU	Components for re-use	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
MR	Materials for recycling	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
MER	Materials for energy recovery	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
EE	Recovered energy exported from system	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

 Table 19. Venue Space Divider Output Flows and Waste Categories – Base Configuration

Davamatav	Dawamatan	Unit per 1	er 1 Life Cycle Stage									
Parameter	Parameter	m²	A1	A2	А3	A4	A5	B4	C2	C3	C4	
HWD	Hazardous waste disposed	kg	4.95E-02	0.00E+00	6.44E-04	0.00E+00	2.52E-03	4.74E-01	0.00E+00	9.80E-06	2.66E-05	
NHWD	Non-hazardous waste disposed	kg	5.18E+00	0.00E+00	2.60E+00	0.00E+00	5.17E+00	2.56E+02	0.00E+00	1.68E+00	1.38E+01	
HLRW	High-level radioactive waste	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
ILLRW	Intermediate- and low-level radioactive waste	kg	9.89E-04	0.00E+00	5.18E-05	0.00E+00	5.27E-05	9.87E-03	0.00E+00	3.69E-07	2.21E-06	
CRU	Components for re-use	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
MR	Materials for recycling	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
MER	Materials for energy recovery	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
EE	Recovered energy exported from system	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

 Table 20. X2 Space Creator Output Flows and Waste Categories – Maximum Configuration

Davamatav	Parameter	Unit per 1									
Parameter		m²	A1	A2	А3	A4	A5	B4	C2	C3	C4
HWD	Hazardous waste disposed	kg	5.77E-02	0.00E+00	1.71E-03	0.00E+00	3.00E-03	5.62E-01	0.00E+00	3.02E-05	7.98E-05
NHWD	Non-hazardous waste disposed	kg	9.57E+00	0.00E+00	6.89E+00	0.00E+00	1.37E+01	6.65E+02	0.00E+00	3.57E+00	4.03E+01
HLRW	High-level radioactive waste	kg	0.00E+00								
ILLRW	Intermediate- and low-level radioactive waste	kg	1.42E-03	0.00E+00	1.37E-04	0.00E+00	7.97E-05	1.48E-02	0.00E+00	1.17E-06	7.33E-06
CRU	Components for re-use	kg	0.00E+00								
MR	Materials for recycling	kg	0.00E+00								
MER	Materials for energy recovery	kg	0.00E+00								
EE	Recovered energy exported from system	MJ	0.00E+00								

Table 21. 725 Folding Screen Resource Use – Biogenic Carbon Results – Minimum Configuration

Davameter	Parameter	Unit per 1	Life Cycle Stage										
Parameter		m²	A1	A2	А3	A4	A5	B4	C2	C3	C4		
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	2.25E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.02E+01	0.00E+00	0.00E+00	0.00E+00		
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.25E+00	2.02E+01	0.00E+00	0.00E+00	0.00E+00		
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
CCE	Calcination Carbon Emissions	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
CCR	Carbonation Carbon Removal	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		

 Table 22. Venue Space Divider Resource Use – Biogenic Carbon Results – Base Configuration

Dawamatau	Parameter	Unit per 1		Life Cycle Stage									
Parameter		m ²	A1	A2	A3	A4	A5	В4	C2	С3	C4		
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	3.84E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.45E+01	0.00E+00	0.00E+00	0.00E+00		
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.92E-01	3.63E+01	0.00E+00	0.00E+00	3.84E+00		
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	6.20E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.58E+01	0.00E+00	0.00E+00	0.00E+00		
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.20E+00	5.58E+01	0.00E+00	0.00E+00	0.00E+00		
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
CCE	Calcination Carbon Emissions	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
CCR	Carbonation Carbon Removal	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		

 Table 23. X2 Space Creator Resource Use – Biogenic Carbon Results – Maximum Configuration

Davameter	Parameter	Unit per 1	it per 1 Life Cycle Stage									
Parameter		m²	A1	A2	А3	A4	A5	B4	C2	С3	C4	
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.65E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.48E+02	0.00E+00	0.00E+00	0.00E+00	
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.65E+01	1.48E+02	0.00E+00	0.00E+00	0.00E+00	
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
CCE	Calcination Carbon Emissions	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
CCR	Carbonation Carbon Removal	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

 Table 24. 725 Folding Screen – IPCC6 GWP100 – Minimum Configuration

Parameter	Parameter	Unit per 1	Life Cycle Stage									
		m²	A1	A2	А3	A4	A5	В4	C2	С3	C4	
	Global warming potential, Fossil	kg CO ₂ -Eq.	2.64E+01	9.60E-01	5.34E+00	1.07E+00	1.76E+00	3.28E+02	6.35E-02	6.00E-01	2.57E-01	
	Global warming potential, Biogenic including CO₂ Uptake	kg CO ₂ -Eq.	9.94E-01	6.25E-04	1.17E+00	6.98E-04	9.27E-01	6.38E+01	4.13E-05	8.37E-01	3.16E+00	
GWP ₁₀₀	Global warming potential, Land Transformation	kg CO ₂ -Eq.	1.01E-01	0.00E+00	2.46E-03	0.00E+00	5.21E-03	9.82E-01	0.00E+00	1.08E-04	9.72E-05	
	Global warming potential, CO₂ Uptake	kg CO ₂ -Eq.	-8.51E+00	-6.25E-04	-2.50E+00	-6.98E-04	-5.51E-01	-1.04E+02	-4.13E-05	-5.74E-04	-1.27E-03	
	Global warming potential, Biogenic without CO ₂ Uptake	kg CO ₂ -Eq.	6.55E-02	0.00E+00	4.35E-01	0.00E+00	5.81E-01	3.01E+01	0.00E+00	7.68E-05	2.26E+00	

Table 25. Venue Space Divider – IPCC6 GWP100 – Base Configuration

Parameter	Parameter	Unit per 1	Life Cycle Stage									
rarameter		m²	A1	A2	A3	A4	A5	В4	C2	C3	C4	
	Global warming potential, Fossil	kg CO ₂ -Eq.	9.49E+01	1.16E+00	1.47E+01	2.96E+00	5.86E+00	1.09E+03	1.75E-01	1.04E+00	4.83E-01	
	Global warming potential, Biogenic including CO₂ Uptake	kg CO ₂ -Eq.	4.58E+00	7.52E-04	3.22E+00	1.93E-03	2.44E+00	1.54E+02	1.14E-04	1.44E+00	5.38E+00	
GWP ₁₀₀	Global warming potential, Land Transformation	kg CO ₂ -Eq.	2.84E-01	0.00E+00	6.78E-03	0.00E+00	1.46E-02	2.75E+00	0.00E+00	2.22E-04	2.07E-04	
	Global warming potential, CO₂ Uptake	kg CO ₂ -Eq.	-6.80E+00	-7.52E-04	-6.89E+00	-1.93E-03	-6.85E-01	-1.29E+02	-1.14E-04	-1.21E-03	-2.61E-03	
	Global warming potential, Biogenic without CO ₂ Uptake	kg CO ₂ -Eq.	4.47E-01	0.00E+00	1.20E+00	0.00E+00	1.50E+00	6.29E+01	0.00E+00	1.49E-04	3.84E+00	

Table 26. X2 Space Creator – IPCC6 GWP100 – Maximum Configuration

Parameter	Parameter	Unit per 1	Unit per 1 Life Cycle Stage								
		m ²	A1	A2	А3	A4	A5	В4	C2	С3	C4
	Global warming potential, Fossil	kg CO ₂ -Eq.	1.44E+02	1.79E+00	3.91E+01	7.87E+00	1.02E+01	1.88E+03	4.65E-01	4.31E+00	1.78E+00
	Global warming potential, Biogenic including CO₂ Uptake	kg CO ₂ -Eq.	1.98E+01	1.16E-03	8.55E+00	5.12E-03	7.38E+00	5.81E+02	3.03E-04	6.03E+00	2.28E+01
GWP ₁₀₀	Global warming potential, Land Transformation	kg CO ₂ -Eq.	3.79E-01	0.00E+00	1.80E-02	0.00E+00	2.00E-02	3.77E+00	0.00E+00	7.66E-04	5.96E-04
	Global warming potential, CO₂ Uptake	kg CO ₂ -Eq.	-6.70E+01	-1.16E-03	-1.83E+01	-5.12E-03	-4.27E+00	-8.06E+02	-3.03E-04	-4.05E-03	-8.16E-03
	Global warming potential, Biogenic without CO ₂ Uptake	kg CO ₂ -Eq.	4.24E-01	0.00E+00	3.19E+00	0.00E+00	4.23E+00	2.17E+02	0.00E+00	5.52E-04	1.63E+01

6. LCA: Interpretation

When evaluating the full cradle-to-gate with options results, the replacement (B4) stage is the primary driver of results for all impact categories. However, as described in Section 4.5, the replacement stage accounts for product replacement across a ten-year period and is the sum of A1-A5 and C1-C4. Therefore, when evaluating one product without replacements, the product production stage (A1-A3) is the primary driver of results for all impact categories for Space Creators.

While quality control was undertaken at each step in building the LCI and conducting the LCIA, uncertainty is still present in the results since the data evaluated represents only one year of manufacturing information. Some level of uncertainty is inherent in conducting LCA and decision making must reflect this fact. Additionally, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the products as outlined in Sections 3.0 and 4.0 of this EPD.

7. Additional Environmental Information

7.1 ENVIRONMENT AND HEALTH DURING MANUFACTURING

Claridge Products and Equipment has implemented a comprehensive employee health and safety program in all its manufacturing facilities. Safety team leaders regularly review and analyze all materials used during manufacturing to ensure employee wellbeing. Claridge Products and Equipment meets or exceeds all OSHA requirements.

7.2 ENVIRONMENT AND HEALTH DURING INSTALLATION OR USE

No damage to health or impairment is expected under normal use corresponding to the intended use or installation of the product following standard guidelines.

7.5 ENVIRONMENTAL ACTIVITIES AND CERTIFICATIONS

We are committed to protecting and preserving our natural environment through a variety of ongoing programs and certifications. Claridge Cork is made from the bark of cork oak trees without damaging the tree itself – making it both rapidly renewable and recyclable. Our carton and crating materials are composed of post-industrial and recycled materials. Tons of material are eliminated from the landfill waste stream through our in-house recycling programs. Our space creators have achieved SCS Indoor Advantage™ Gold certification.

7.6 FURTHER INFORMATION

Claridge Products
480 Wrangler Drive
Suite 200
Coppell, TX 75019
1-800-364-2422
calyx@claridgeproducts.com

8. References

- 1. Claridge Products Life Cycle Assessment, Sustainable Solutions Corporation, April 2025
- 2. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.
- 3. ISO 14040: 2006 Environmental Management Life cycle assessment Principles and Framework
- 4. ISO 14044: 2006/Amd 1:2017/ Amd 2:2020 Environmental Management Life cycle assessment Requirements and Guidelines.
- 5. ISO 21930: 2017 Sustainability in building construction Environmental declaration of building products.
- 6. SCS Type III Environmental Declaration Program: Program Operator Manual. V12.0 December 2023. SCS Global Services.
- 7. BIFMA PCR for Office Furniture Workspace Products: UNCPC 3814, V2. NSF International. Valid through January 2030.

For more information, contact:

Claridge Products

480 Wrangler Drive, Suite 200 Coppell, TX 75019 https://claridgeproducts.com/ 1-800-364-2422

SCS Global Services

2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA Main +1.510.452.8000 | fax +1.510.452.8001